Long non‑coding RNA MALAT1 promotes high glucose‑induced rat cartilage endplate cell apoptosis via the p38/MAPK signalling pathway

长链非编码RNA MALAT1通过p38/MAPK信号通路促进高糖诱导的大鼠软骨终板细胞凋亡

阅读:5
作者:Zengxin Jiang, Qingmin Zeng, Defang Li, Lei Ding, Wei Lu, Mengxuan Bian, Jingping Wu

Abstract

Diabetes mellitus (DM) contributes to intervertebral disc degeneration (IDD). The long non‑coding RNA MALAT1 has been revealed to play an important role in diabetes‑associated complications. However, the specific role of MALAT1 in diabetes‑associated IDD has not been determined. The aim of the present study was to evaluate the roles of MALAT1 in the apoptosis of cartilage endplate (CEP) cells induced by high glucose and to explore the mechanisms underlying this effect. Rat CEP cells were cultured in high‑glucose medium (25 mM glucose) for 24 or 72 h. Cells cultured in medium containing 5 mM glucose were used as a control. Flow cytometry was used to detect the degree of apoptosis. Reverse transcription‑quantitative PCR was used to measure the expression of MALAT1 mRNA. In addition, CEP cells were treated with different conditions (high glucose, high glucose + MALAT1 negative control, high glucose + MALAT1 RNAi, normal control) for 72 h. Flow cytometry was subsequently used to detect apoptosis and western blotting was used to measure the expression levels of total and phosphorylated p38. The results revealed that high glucose concentration promoted apoptosis and enhanced expression of MALAT1 in CEP cells. Furthermore, MALAT1 knockout decreased the expression levels of total and phosphorylated p38 and reduced the apoptosis of rat CEP cells. The results obtained in the present study indicated that MALAT1 may serve as an important therapeutic target for curing or delaying IDD in patients with diabetes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。