GDF11 induces differentiation and apoptosis and inhibits migration of C17.2 neural stem cells via modulating MAPK signaling pathway

GDF11通过调控MAPK信号通路诱导C17.2神经干细胞分化凋亡并抑制迁移

阅读:4
作者:Zongkui Wang, Miaomiao Dou, Fengjuan Liu, Peng Jiang, Shengliang Ye, Li Ma, Haijun Cao, Xi Du, Pan Sun, Na Su, Fangzhao Lin, Rong Zhang, Changqing Li

Abstract

GDF11, a member of TGF-β superfamily, has recently received widespread attention as a novel anti-ageing/rejuvenation factor to reverse age-related dysfunctions in heart and skeletal muscle, and to induce angiogenesis and neurogenesis. However, these positive effects of GDF11 were challenged by several other studies. Furthermore, the mechanism is still not well understood. In the present study, we evaluated the effects of GDF11 on C17.2 neural stem cells. GDF11 induced differentiation and apoptosis, and suppressed migration of C17.2 neural stem cells. In addition, GDF11 slightly increased cell viability after 24 h treatment, showed no effects on proliferation for about 10 days of cultivation, and slightly decreased cumulative population doubling for long-term treatment (p < 0.05). Phospho-proteome profiling array displayed that GDF11 significantly increased the phosphorylation of 13 serine/threonine kinases (p < 0.01), including p-p38, p-ERK and p-Akt, in C17.2 cells, which implied the activation of MAPK pathway. Western blot validated that the results of phospho-proteome profiling array were reliable. Based on functional analysis, we demonstrated that the differentially expressed proteins were mainly involved in signal transduction which was implicated in cellular behavior. Collectively, our findings suggest that, for neurogenesis, GDF11 might not be the desired rejuvenation factor, but a potential target for pharmacological blockade.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。