Anti‑inflammatory and anti‑catabolic effect of non‑animal stabilized hyaluronic acid and mesenchymal stem cell‑conditioned medium in an osteoarthritis coculture model

非动物稳定透明质酸和间充质干细胞培养基在骨关节炎共培养模型中的抗炎和抗分解代谢作用

阅读:5
作者:Mario Simental-Mendía, Sonia Amelia Lozano-Sepúlveda, Vanessa Pérez-Silos, Lizeth Fuentes-Mera, Herminia Guadalupe Martínez-Rodríguez, Carlos Alberto Acosta-Olivo, Víctor Manuel Peña-Martínez, Félix Vilchez-Cavazos

Abstract

Previous clinical studies have reported the clinical effectiveness of non‑animal stabilized hyaluronic acid (NASHA) and adipose‑derived mesenchymal stromal/stem cells (MSC) in the treatment of knee osteoarthritis (OA). Unlike MSC secreted mediators, in vitro anti‑inflammatory effects of NASHA have not been evaluated. We aimed to evaluate and compare the anti‑inflammatory effect of NASHA and MSC conditioned medium (stem cell‑conditioned medium; SC‑CM), in an explant‑based coculture model of OA. Cartilage and synovial membrane from seven patients undergoing total knee arthroplasty were used to create a coculture system. Recombinant IL‑1β was added to the cocultures to induce inflammation. Four experimental groups were generated: i) Basal; ii) IL‑1β; iii) NASHA (NASHA + IL‑1β); and iv) SC‑CM (SC‑CM + IL‑1β). Glycosaminoglycans (GAG) released in the culture medium and of nitric oxide (NO) production were quantified. Gene expression in cartilage and synovium of IL‑1β, matrix metallopeptidase 13 (MMP13), ADAM metallopeptidase with thrombospondin type 1 motif 5 (ADAMTS5) and tissue inhibitor of metalloproteinases 1 (TIMP1) was measured by reverse transcription‑quantitative PCR. Media GAG concentration was decreased in cocultures with NASHA and SC‑CM (48 h, P<0.05; 72 h, P<0.01) compared with IL‑1β. Production of NO was significantly lower only in SC‑CM after 72 h (P<0.01). In cartilage, SC‑CM inhibited the expression of IL‑1β, MMP13 and ADAMTS5, while NASHA had this effect only in MMP13 and ADAMTS5. In synovium, SC‑CM decreased the expression level of MMP13 and ADAMTS5, while NASHA only decreased ADAMTS5 expression. Both NASHA and SC‑CM increased TIMP1 expression in cartilage and synovium. Treatments with NASHA and SC‑CM were shown to be a therapeutic option that may help counteract the catabolism produced by the inflammatory state in knee OA. The anti‑inflammatory mediators produced by MSC promote a lower expression of inflammatory targets in our study model.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。