Role of type 2A phosphatase regulatory subunit B56α in regulating cardiac responses to β-adrenergic stimulation in vivo

2A 型磷酸酶调节亚基 B56α 在体内调节心脏对 β-肾上腺素刺激的反应中的作用

阅读:6
作者:Sarah-Lena Puhl, Kate L Weeks, Alican Güran, Antonella Ranieri, Peter Boknik, Uwe Kirchhefer, Frank U Müller, Metin Avkiran

Aims

B56α is a protein phosphatase 2A (PP2A) regulatory subunit that is highly expressed in the heart. We previously reported that cardiomyocyte B56α localizes to myofilaments under resting conditions and translocates to the cytosol in response to acute β-adrenergic receptor (β-AR) stimulation. Given the importance of reversible protein phosphorylation in modulating cardiac function during sympathetic stimulation, we hypothesized that loss of B56α in mice with targeted disruption of the gene encoding B56α (Ppp2r5a) would impact on cardiac responses to β-AR stimulation in vivo.

Conclusion

These findings identify B56α as a potential regulator of cardiac structure and function during β-AR stimulation.

Results

Cardiac phenotype of mice heterozygous (HET) or homozygous (HOM) for the disrupted Ppp2r5a allele and wild type (WT) littermates was characterized under basal conditions and following acute β-AR stimulation with dobutamine (DOB; 0.75 mg/kg i.p.) or sustained β-AR stimulation by 2-week infusion of isoproterenol (ISO; 30 mg/kg/day s.c.). Left ventricular (LV) wall thicknesses, chamber dimensions and function were assessed by echocardiography, and heart tissue collected for gravimetric, histological, and biochemical analyses. Western blot analysis revealed partial and complete loss of B56α protein in hearts from HET and HOM mice, respectively, and no changes in the expression of other PP2A regulatory, catalytic or scaffolding subunits. PP2A catalytic activity was reduced in hearts of both HET and HOM mice. There were no differences in the basal cardiac phenotype between genotypes. Acute DOB stimulation induced the expected inotropic response in WT and HET mice, which was attenuated in HOM mice. In contrast, DOB-induced increases in heart rate were unaffected by B56α deficiency. In WT mice, ISO infusion increased LV wall thicknesses, cardiomyocyte area and ventricular mass, without LV dilation, systolic dysfunction, collagen deposition or foetal gene expression. The hypertrophic response to ISO was blunted in mice deficient for B56α.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。