Novel Insights into the Cardioprotective Effects of Calcitriol in Myocardial Infarction

骨化三醇在心肌梗死中发挥心脏保护作用的新见解

阅读:3
作者:Simin Yang ,Chunmiao Wang ,Chengshao Ruan ,Meiling Chen ,Ran Cao ,Liang Sheng ,Naiying Chang ,Tong Xu ,Peiwen Zhao ,Xuesheng Liu ,Fengqin Zhu ,Qingzhong Xiao ,Shan Gao

Abstract

Background: Increasing evidence indicates that vitamin D deficiency negatively affects the cardiovascular system. Here we studied the therapeutic effects of calcitriol in myocardial infarction (MI) and investigated its underlying mechanisms. Methods: A MI model of Kun-ming mice induced by left anterior descending coronary artery ligation was utilized to study the potential therapeutic effects of calcitriol on MI. AC16 human cardiomyocyte-like cells treated with TNF-α were used for exploring the mechanisms that underlie the cardioprotective effects of calcitriol. Results: We observed that calcitriol reversed adverse cardiovascular function and cardiac remodeling in post-MI mice. Mechanistically, calcitriol suppressed MI-induced cardiac inflammation, ameliorated cardiomyocyte death, and promoted cardiomyocyte proliferation. Specifically, calcitriol exerted these cellular effects by upregulating Vitamin D receptor (VDR). Increased VDR directly interacted with p65 and retained p65 in cytoplasm, thereby dampening NF-κB signaling and suppressing inflammation. Moreover, up-regulated VDR was translocated into nuclei where it directly bound to IL-10 gene promoters to activate IL-10 gene transcription, further inhibiting inflammation. Conclusion: We provide new insights into the cellular and molecular mechanisms underlying the cardioprotective effects of calcitriol, and we present comprehensive evidence to support the preventive and therapeutic effects of calcitriol on MI. Keywords: IL-10; NF-κB; calcitriol; cardiac inflammation and remodeling; cardiovascular disease; myocardial infarction; vitamin D.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。