Activation and Migration of Human Skeletal Muscle Stem Cells In Vitro Differently Rely on Calcium Signals

人类骨骼肌干细胞体外激活和迁移对钙信号的依赖不同

阅读:8
作者:Axel Tollance, Stéphane Koenig, Nicolas Liaudet, Maud Frieden

Abstract

Muscle regeneration is essential for proper muscle homeostasis and relies primarily on muscle stem cells (MuSC). MuSC are maintained quiescent in their niche and can be activated following muscle injury. Using an in vitro model of primary human quiescent MuSC (called reserve cells, RC), we analyzed their Ca2+ response following their activation by fetal calf serum and assessed the role of Ca2+ in the processes of RC activation and migration. The results showed that RC displayed a high response heterogeneity in a cell-dependent manner following serum stimulation. Most of these responses relied on inositol 1,4,5-trisphosphate (IP3)-dependent Ca2+ release associated with Ca2+ influx, partly due to store-operated calcium entry. Our study further found that blocking the IP3 production, Ca2+ influx, or both did not prevent the activation of RC. Intra- or extracellular Ca2+ chelation did not impede RC activation. However, their migration potential depended on Ca2+ responses displayed upon stimulation, and Ca2+ blockers inhibited their movement. We conclude that the two major steps of muscle regeneration, namely the activation and migration of MuSC, differently rely on Ca2+ signals.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。