Three-Dimensionally Printed Silk-Sericin-Based Hydrogel Scaffold: A Promising Visualized Dressing Material for Real-Time Monitoring of Wounds

三维打印丝胶基水凝胶支架:一种有前途的可视化敷料材料,用于实时监测伤口

阅读:6
作者:Chang-Sheng Chen, Fei Zeng, Xiao Xiao, Zhen Wang, Xiao-Li Li, Rong-Wei Tan, Wei-Qiang Liu, Ye-Shun Zhang, Zhen-Ding She, Song-Jian Li

Abstract

A wound dressing which can be convenient for real-time monitoring of wounds is particularly attractive and user-friendly. In this study, a nature-originated silk-sericin-based (SS-based) transparent hydrogel scaffold was prepared and evaluated for the visualization of wound care. The scaffold was fabricated from a hybrid interpenetrating-network (IPN) hydrogel composed of SS and methacrylic-anhydride-modified gelatin (GelMA) by 3D printing. The scaffold transformed into a highly transparent hydrogel upon swelling in PBS, and thus, anything underneath could be easily read. The scaffold had a high degree of swelling and presented a regularly macroporous structure with pores around 400 μm × 400 μm, which can help maintain the moist and apinoid environment for wound healing. Meanwhile, the scaffolds were conducive to adhesion and proliferation of L929 cells. A coculture of HaCaT and HSF cells on the scaffold showed centralized proliferation of the two cells in distributed layers, respectively, denoting a promising comfortable environment for re-epithelialization. Moreover, in vivo studies demonstrated that the scaffold showed no excessive inflammatory reaction. In short, this work presented an SS-based transparent hydrogel scaffold with steerable physical properties and excellent biocompatibility through 3D printing, pioneering promising applications in the visualization of wound care and drug delivery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。