Shockproof Deformable Infrared Radiation Sensors Based on a Polymeric Rubber and Organic Semiconductor H2Pc-CNT Composite

基于聚合物橡胶和有机半导体 H2Pc-CNT 复合材料的防震可变形红外辐射传感器

阅读:5
作者:Muhammad Tariq Saeed Chani, Khasan S Karimov, Tahseen Kamal, Noshin Fatima, Mohammed M Rahman, Abdullah M Asiri

Abstract

Polymeric rubber and organic semiconductor H2Pc-CNT-composite-based surface- and sandwich-type shockproof deformable infrared radiation (IR) sensors were fabricated using a rubbing-in technique. CNT and CNT-H2Pc (30:70 wt.%) composite layers were deposited on a polymeric rubber substrate as electrodes and active layers, respectively. Under the effect of IR irradiation (0 to 3700 W/m2), the resistance and the impedance of the surface-type sensors decreased up to 1.49 and 1.36 times, respectively. In the same conditions, the resistance and the impedance of the sandwich-type sensors decreased up to 1.46 and 1.35 times, respectively. The temperature coefficients of resistance (TCR) of the surface- and sandwich-type sensors are 1.2 and 1.1, respectively. The novel ratio of the H2Pc-CNT composite ingredients and comparably high value of the TCR make the devices attractive for bolometric applications meant to measure the intensity of infrared radiation. Moreover, given their easy fabrication and low-cost materials, the fabricated devices have great potential for commercialization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。