Osteogenic potential of stem cells-seeded bioactive nanocomposite scaffolds: A comparative study between human mesenchymal stem cells derived from bone, umbilical cord Wharton's jelly, and adipose tissue

干细胞接种生物活性纳米复合支架的成骨潜力:来自骨骼、脐带华通氏胶和脂肪组织的人类间充质干细胞的比较研究

阅读:4
作者:Saeid Kargozar, Masoud Mozafari, Seyed Jafar Hashemian, Peiman Brouki Milan, Sepideh Hamzehlou, Mansooreh Soleimani, Mohammad Taghi Joghataei, Mazaher Gholipourmalekabadi, Alireza Korourian, Kazem Mousavizadeh, Alexander M Seifalian

Abstract

Bone regeneration is considered as an unmet clinical need, the aim of this study is to investigate the osteogenic potential of three different mesenchymal stem cells (MSCs) derived from human bone marrow (BM-MSCs), umbilical cord Wharton's jelly (UC-MSCs), and adipose (AD-MSCs) seeded on a recently developed nanocomposite scaffold (bioactive glass/gelatin) implanted in rat animal models with critical size calvarial defects. In this study, after isolation, culture, and characterization, the MSCs were expanded and seeded on the scaffolds for in vitro and in vivo studies. The adhesion, proliferation, and viability of the cells on the scaffolds evaluated in vitro, showed that the scaffolds were biocompatible for further examinations. In order to evaluate the scaffolds in vivo, rat animal models with critical size calvarial defects were randomly categorized in four groups and treated with the scaffolds. The animals were sacrificed at the time points of 4 and 12 weeks of post-implantation, bone healing process were investigated. The histological and immunohistological observations showed (p < 0.01) higher osteogenesis capacity in the group treated with BM-MSCs/scaffolds compared to the other groups. However, the formation of new angiogenesis was evidently higher in the defects filled with UC-MSCs/scaffolds. This preliminary study provides promising data for further clinical trials. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 61-72, 2018.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。