Phase Segregation in PdCu Alloy Nanoparticles During CO Oxidation Reaction at Atmospheric Pressure

常压 CO 氧化反应中 PdCu 合金纳米颗粒的相分离

阅读:6
作者:Yingying Jiang, Alvin M H Lim, Hongwei Yan, Hua Chun Zeng, Utkur Mirsaidov

Abstract

Bimetallic nanoparticle (NP) catalysts are widely used in many heterogeneous gas-based reactions because they often outperform their monometallic counterparts. During these reactions, NPs often undergo structural changes, which impact their catalytic activity. Despite the important role of the structure in the catalytic activity, many aspects of how a reactive gaseous environment affects the structure of bimetallic nanocatalysts are still lacking. Here, using gas-cell transmission electron microscopy (TEM), it is shown that during a CO oxidation reaction over PdCu alloy NPs, the selective oxidation of Cu causes the segregation of Cu and transforms the NPs into Pd-CuO NPs. The segregated NPs are very stable and have high activity for the conversion of CO into CO2 . Based on the observations, the segregation of Cu from Cu-based alloys during a redox reaction is likely to be general and may have a positive impact on the catalytic activity. Hence, it is believed that similar insights based on direct observation of the reactions under relevant reactive conditions are critical both for understanding and designing high-performance catalysts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。