Downregulation of high mobility group box 1 enhances the radiosensitivity of non-small cell lung cancer by acting as a crucial target of microRNA-107

高迁移率族蛋白 B1 的下调通过充当 microRNA-107 的关键靶点增强非小细胞肺癌的放射敏感性

阅读:8
作者:Lu Bai, Jingjing Zhang, Dongqi Gao, Chengyi Liu, Wenxin Li, Qingshan Li

Abstract

High mobility group box 1 (HMGB1) has been reported to regulate the sensitivity of several types of cancer cell to chemoradiotherapy. The present study aimed to investigate the changes in HMGB1 expression after radiotherapy, as well as its regulatory role in the radiosensitivity of non-small cell lung cancer (NSCLC) cells. The expression levels of HMGB1 in the serum of 73 patients with NSCLC were analyzed by ELISA. HMGB1 mRNA and microRNA (miR)-107 expression in NSCLC cells were assessed using reverse transcription-quantitative PCR. Receiver operating characteristic analysis was used to evaluate the diagnostic value of HMGB1. Cell counting kit-8, Transwell invasion and clonogenic assays were used to determine cellular viability, invasiveness and colony formation ability, respectively. Following radiotherapy, the levels of HMGB1 were significantly decreased in the serum of patients with NSCLC, and lower serum levels had relatively high diagnostic accuracy in radiosensitive patients. Furthermore, HMGB1-knockdown retarded cellular proliferation and invasion with or without irradiation, and enhanced NSCLC cell radiosensitivity. Furthermore, knocking down miR-107 reversed the decreases in cellular proliferation and invasiveness both with and without irradiation, and reduced the survival fractions induced by sh-HMGB1. HMGB1-knockdown leads to radiosensitivity that may result from suppression of the Toll-like receptor 4 (TLR4)/NF-κB signaling pathway. Collectively, decreased expression of HMGB1 was found to be a putative diagnostic predictor of radiosensitivity in patients with NSCLC. HMGB1-knockdown inhibited the proliferation and enhanced the radiosensitivity of NSCLC cells, which may be regulated via miR-107 by mediating the TLR4/NF-κB signaling pathway. Thus, HMGB1 may be a potential regulator of radioresistance in NSCLC, and the HMGB1/miR-107 axis may represent a promising therapeutic target.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。