Transforming growth factor-β plays divergent roles in modulating vascular remodeling, inflammation, and pulmonary fibrosis in a murine model of scleroderma

转化生长因子-β 在小鼠硬皮病模型中调节血管重塑、炎症和肺纤维化方面发挥着不同的作用

阅读:6
作者:Kazuyuki Tsujino, Nilgun Isik Reed, Amha Atakilit, Xin Ren, Dean Sheppard

Abstract

The efficacy and feasibility of targeting transforming growth factor-β (TGFβ) in pulmonary fibrosis and lung vascular remodeling in systemic sclerosis (SSc) have not been well elucidated. In this study we analyzed how blocking TGFβ signaling affects pulmonary abnormalities in Fos-related antigen 2 (Fra-2) transgenic (Tg) mice, a murine model that manifests three important lung pathological features of SSc: fibrosis, inflammation, and vascular remodeling. To interrupt TGFβ signaling in the Fra-2 Tg mice, we used a pan-TGFβ-blocking antibody, 1D11, and Tg mice in which TGFβ receptor type 2 (Tgfbr2) is deleted from smooth muscle cells and myofibroblasts (α-SMA-CreER;Tgfbr2flox/flox). Global inhibition of TGFβ by 1D11 did not ameliorate lung fibrosis histologically or biochemically, whereas it resulted in a significant increase in the number of immune cells infiltrating the lungs. In contrast, 1D11 treatment ameliorated the severity of pulmonary vascular remodeling in Fra-2 Tg mice. Similarly, genetic deletion of Tgfbr2 from smooth muscle cells resulted in improvement of pulmonary vascular remodeling in the Fra-2 Tg mice, as well as a decrease in the number of Ki67-positive vascular smooth muscle cells, suggesting that TGFβ signaling contributes to development of pulmonary vascular remodeling by promoting the proliferation of vascular smooth muscle cells. Deletion of Tgfbr2 from α-smooth muscle actin-expressing cells had no effect on fibrosis or inflammation in this model. These results suggest that efforts to target TGFβ in SSc will likely require more precision than simply global inhibition of TGFβ function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。