Experimental Activation of Endocannabinoid System Reveals Antilipotoxic Effects on Cardiac Myocytes

内源性大麻素系统的实验激活揭示了其对心肌细胞的抗脂毒性作用

阅读:5
作者:Ewa Harasim-Symbor, Agnieszka Polak-Iwaniuk, Karolina Konstantynowicz-Nowicka, Patrycja Bielawiec, Barbara Malinowska, Irena Kasacka, Adrian Chabowski

Abstract

Hypertension coincides with myocardial alternations in lipid (including sphingolipids) and glucose metabolism. The latest data indicate that accumulation of metabolically active lipids, especially ceramide (CER) and diacylglycerol (DAG) significantly influences intracellular signaling pathways along with inducing insulin resistance. Since, it was demonstrated that the endocannabinoid system (ECS) affects myocardial metabolism it seems to be a relevant tool in alleviating metabolic disturbances within the cardiac muscle due to hypertension. All designed experiments were conducted on the animal model of primary hypertension, i.e., spontaneously hypertensive rat (SHR) with chronic ECS activation by injections of fatty acid amide hydrolase (FAAH) inhibitor-URB597. Lipid analyses were performed using chromatography techniques (gas liquid, thin layer, and high performance liquid chromatography). Colorimetric and immunoenzymatic testes were applied in order to determine plasma concentrations of insulin and glucose. Total myocardial expression of selected proteins was measured by Western blotting and/or immunohistochemistry methods. SHRs exhibited significantly intensified myocardial de novo pathway of CER synthesis as well as DAG accumulation compared to the control Wistar Kyoto rats. Besides, intramyocardial level of potentially cardioprotective sphingolipid, i.e., sphingosine-1-phosphate was considerably decreased in SHRs, whereas URB597 treatment restored the level of this derivative. Unexpectedly, ECS upregulation protected overloaded cardiac muscle against CER and DAG accumulation. Moreover, chronic URB597 treatment improved intramyocardial insulin signaling pathways in both normotensive and hypertensive conditions. It seems that the enhanced ECS triggers protective mechanisms in the heart due to decreasing the level of lipid mediators of insulin resistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。