Knockdown of UTX/KDM6A Enriches Precursor Cell Populations in Urothelial Cell Cultures and Cell Lines

敲低 UTX/KDM6A 可丰富尿路上皮细胞培养物和细胞系中的前体细胞群

阅读:4
作者:Alexander Lang, Patcharawalai Whongsiri, Merve Yilmaz, Tobias Lautwein, Patrick Petzsch, Annemarie Greife, Cagatay Günes, Karl Köhrer, Günter Niegisch, Michèle Hoffmann, Wolfgang A Schulz

Abstract

The histone demethylase UTX (gene: KDM6A) directs cell and tissue differentiation during development. Deleterious mutations in KDM6A occur in many human cancers, most frequently in urothelial carcinoma. The consequences of these mutations are poorly understood; plausibly, they may disturb urothelial differentiation. We therefore investigated the effects of UTX siRNA-mediated knockdown in two in vitro models of urothelial differentiation; namely, primary cultures of urothelial epithelial cells treated with troglitazone and PD153035 and the immortalized urothelial cell line HBLAK treated with high calcium and serum. In both models, efficient UTX knockdown did not block morphological and biochemical differentiation. An apparent delay was due to a cytotoxic effect on the cell cultures before the initiation of differentiation, which induced apoptosis partly in a p53-dependent manner. As a consequence, slowly cycling, smaller, KRT14high precursor cells in the HBLAK cell line were enriched at the expense of more differentiated, larger, proliferating KRT14low cells. UTX knockdown induced apoptosis and enriched KRT14high cells in the BFTC-905 papillary urothelial carcinoma cell line as well. Our findings suggest an explanation for the frequent occurrence of KDM6A mutations across all stages and molecular subtypes of urothelial carcinoma, whereby loss of UTX function does not primarily impede later stages of urothelial differentiation, but favors the expansion of precursor populations to provide a reservoir of potential tumor-initiating cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。