Dietary Genistein Rescues Reduced Basal Chloride Secretion in Diabetic Jejunum via Sex-Dependent Mechanisms

膳食染料木黄酮通过性别依赖性机制挽救糖尿病患者空肠基础氯化物分泌减少

阅读:5
作者:Shawn Catmull, Faisal Masood, Sydney Schacht, Robert Dolan, Daniel Stegman, Lana Leung, Layla Al-Nakkash

Aims

The goal of this study was to determine the effect of dietary genistein (naturally occurring phytoestrogen) on jejunal secretory function in a clinically relevant model of diabetes and obesity, the leptin-defIcient ob/ob mouse.

Background/aims

The goal of this study was to determine the effect of dietary genistein (naturally occurring phytoestrogen) on jejunal secretory function in a clinically relevant model of diabetes and obesity, the leptin-defIcient ob/ob mouse.

Conclusions

Our data suggests that the reduced basal jejunal Isc in ob/ob female mice is a consequence of reduced CFTR expression, decreased activities of the basolateral KCa channel and Na+/K+-ATPase, and in male mice reduced basal jejunal Isc is a consequence of reduced CFTR and NKCC1 expression, along with decreased activities of the basolateral KCa channel and Na+/K+-ATPase. Genistein-diet has beneficial effects on basal Isc mediated by sex-dependent mechanisms in diabetic mice: in females via increased KCa-sensitive Isc and in males via increased Na+/K+-ATPase activity and increased NKCC1 expression. Improved understanding of intestinal dysfunctions in the ob/ob jejunum, may allow for the development of novel drug targets to treat obesity and diabetes, and may also be of benefit in CF-related diabetes.

Methods

We measured transepithelial short circuit current (Isc), across freshly isolated segments of jejunum from 12-week old male and female ob/ob and lean C57Bl/6J mice fed a genistein diet (600 mg genistein/kg diet) for 4-weeks. Separate segments of jejunum were frozen for western blot determination of key proteins involved in secretory transport.

Results

Basal Isc was signifIcantly decreased (by 33%, P<0.05) in ob/ob females versus leans, and genistein-diet reversed this. Similarly, in males, basal Isc was decreased (by 47%, P<0.05) in ob/ob mice versus leans, and genistein-diet reversed this. Inhibition with either clotrimazole (100 µM, bilateral) or ouabain (100 µM, basolateral) was signifIcantly reduced in ob/ob mice compared to leans (P<0.05), and genistein-diet reversed clotrimazole-sensitive inhibition in ob/ob females, and reversed the ouabain-sensitive inhibition in males (indicating sex-dependent mechanisms). Our data suggested that PDE3 levels were dysregulated in ob/ob females and genistein reversed this. Expression of total CFTR (normalized to actin) was signifIcantly decreased ∼80% (P<0.05) in all ob/ob mice compared to leans, and genistein-diet was without effect. Expression of total NKCC1 (normalized to actin) was signifIcantly decreased ∼80% (P<0.05) in ob/ob male mice versus leans, and genistein-diet reversed this. Conclusions: Our data suggests that the reduced basal jejunal Isc in ob/ob female mice is a consequence of reduced CFTR expression, decreased activities of the basolateral KCa channel and Na+/K+-ATPase, and in male mice reduced basal jejunal Isc is a consequence of reduced CFTR and NKCC1 expression, along with decreased activities of the basolateral KCa channel and Na+/K+-ATPase. Genistein-diet has beneficial effects on basal Isc mediated by sex-dependent mechanisms in diabetic mice: in females via increased KCa-sensitive Isc and in males via increased Na+/K+-ATPase activity and increased NKCC1 expression. Improved understanding of intestinal dysfunctions in the ob/ob jejunum, may allow for the development of novel drug targets to treat obesity and diabetes, and may also be of benefit in CF-related diabetes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。