Cellular antioxidant mechanisms control immunoglobulin light chain-mediated proximal tubule injury

细胞抗氧化机制控制免疫球蛋白轻链介导的近端小管损伤

阅读:5
作者:Kai Er Ying, Wenguang Feng, Wei-Zhong Ying, Paul W Sanders

Abstract

A major cause of morbidity and mortality in multiple myeloma is kidney injury from overproduction of monoclonal immunoglobulin light chains (FLC). FLC can induce damage through the production of hydrogen peroxide, which activates pro-inflammatory and pro-apoptotic pathways. The present study focused on catalase, a highly conserved antioxidant enzyme that degrades hydrogen peroxide. Initial findings were that FLC increased hydrogen peroxide levels but also decreased catalase levels and activity in proximal tubule epithelium. In order to clarify, we showed that the phosphatidylinositol 3-kinase inhibitor, LY294002, inhibited FLC-induced Akt-mediated deactivation of Forkhead box O class 3a (FoxO3a) and increased catalase activity in proximal tubule cells. Augmented catalase activity decreased FLC-mediated production of hydrogen peroxide as well as the associated increase in High Mobility Group Box 1 (HMGB1) protein release and caspase-3 activity. Coincubation of cells with FLC and an allosteric activator of Sirtuin 1 (SIRT1) was also sufficient to increase catalase activity and promote similar cytoprotective effects. Our studies confirmed that the mechanism of downregulation of catalase by FLC involved deactivation of FoxO3a and inhibition of SIRT1. Mechanistic understanding of catalase regulation allows for future treatments that target pathways that increase catalase in the setting of proximal tubule injury from FLC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。