Microstructure and Hydrothermal Stability of Microporous Niobia-Silica Membranes: Effect of Niobium Doping Contents

微孔氧化铌-二氧化硅膜的微结构和水热稳定性:铌掺杂含量的影响

阅读:5
作者:Jiachen Xia, Jing Yang, Hao Zhang, Yingming Guo, Ruifeng Zhang

Abstract

Methyl-modified niobium-doped silica (Nb/SiO2) materials with various Nb/Si molar ratios (nNb) were fabricated using tetraethoxysilane and methyltriethoxysilane as the silica source and niobium pentachloride as the niobium source by the sol-gel method, and the Nb/SiO2 membranes were prepared thereof by the dip-coating process under an N2 calcining atmosphere. Their microstructures were characterized and gas permeances tested. The results showed that the niobium element existed in the formation of the Nb-O groups in the Nb/SiO2 materials. When the niobium doping content and the calcining temperature were large enough, the Nb2O5 crystals could be formed in the SiO2 frameworks. With the increase of nNb and calcination temperature, the formed particle sizes increased. The doping of Nb could enhance the H2/CO2 and H2/N2 permselectivities of SiO2 membranes. When nNb was equal to 0.08, the Nb/SiO2 membrane achieved a maximal H2 permeance of 4.83 × 10-6 mol·m-2·Pa-1·s-1 and H2/CO2 permselectivity of 15.49 at 200 °C and 0.1 MPa, which also exhibited great hydrothermal stability and thermal reproducibility.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。