One-step synthesis of zwitterionic graphene oxide nanohybrid: Application to polysulfone tight ultrafiltration hollow fiber membrane

两性离子氧化石墨烯纳米杂化物的一步合成及其在聚砜紧密超滤中空纤维膜中的应用

阅读:5
作者:G P Syed Ibrahim, Arun M Isloor, A F Ismail, Ramin Farnood

Abstract

In this paper, novel zwitterionic graphene oxide (GO) nanohybrid was synthesized using monomers [2-(Methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA) and N,N'-methylenebis(acrylamide) (MBAAm) (GO@poly(SBMA-co-MBAAm), and incorporated into polysulfone (PSF) hollow fiber membrane for the effectual rejection of dye from the wastewater. The synthesized nanohybrid was characterized using FT-IR, PXRD, TGA, EDX, TEM and zeta potential analysis. The occurrence of nanohybrid on the membrane matrix and the elemental composition were analyzed by XPS. The as-prepared tight ultrafiltration hollow fiber membrane exhibited high rejection of reactive black 5 (RB-5, 99%) and reactive orange 16 (RO-16, 74%) at a dye concentration of 10 ppm and pure water flux (PWF) of 49.6 L/m2h. Fabricated nanocomposite membranes were also studied for their efficacy in the removal of both monovalent (NaCl) and divalent salts (Na2SO4). The results revealed that the membrane possesses complete permeation to NaCl with less rejection of Na2SO4 (<5%). In addition, the nanocomposite membrane revealed outstanding antifouling performance with the flux recovery ratio (FRR) of 73% towards bovine serum albumin (BSA). Therefore, the in-house prepared novel nanocomposite membrane is a good candidate for the effective decolorization of wastewater containing dye.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。