The isolated effects of local cold application on proteolytic and myogenic signaling

局部冷敷对蛋白水解和肌源性信号的单独影响

阅读:7
作者:Mark L McGlynn, Alejandro M Rosales, Christopher W Collins, Dustin R Slivka

Abstract

Post-exercise cooling studies reveal inhibitory effects on markers of skeletal muscle growth. However, the isolated effect of local cold application has not been adequately addressed. It is unclear if the local cold or the combination of local cold and exercise is driving negatively altered skeletal muscle gene expression. The purpose was to determine the effects of a 4 h local cold application to the vastus lateralis on the myogenic and proteolytic response. Participants (n = 12, 27 ± 6 years, 179 ± 9 cm, 82.8 ± 13.0 kg, 18.4 ± 7.1 %BF) rested with a thermal wrap placed on each leg with either circulating cold fluid (10 °C, COLD) or no fluid circulation (room temperature, RT). Muscle samples were collected to quantify mRNA (RT-qPCR) and proteins (Western Blot) associated with myogenesis and proteolysis. Temperatures in COLD were lower than RT at the skin (13.2 ± 1.0 °C vs. 34.8 ± 0.9 °C; p < 0.001) and intramuscularly (20.5 ± 1.3 °C vs. 35.6 ± 0.8 °C, p < 0.001). Myogenic-related mRNA, MYO-G and MYO-D1, were lower in COLD (p = 0.001, p < 0.001, respectively) whereas myogenic-mRNA, MYF6, was greater in COLD (p = 0.002). No other myogenic associated genes were different between COLD and RT (MSTN, p = 0.643; MEF2a, p = 0.424; MYF5, p = 0.523; RPS3, p = 0.589; RPL3-L, p = 0.688). Proteolytic-related mRNA was higher in COLD (FOXO3a, p < 0.001; Atrogin-1, p = 0.049; MURF-1, p < 0.001). The phosphorylation:total protein ratio for the translational repressor of muscle mass, 4E-BP1Thr37/46, was lower in COLD (p = 0.043), with no differences in mTORser2448 (p = 0.509) or p70S6K1Thr389 (p = 0.579). Isolated local cooling over 4 h exhibits inhibited myogenic and higher proteolytic skeletal muscle molecular response.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。