Bi-allelic premature truncating variants in LTBP1 cause cutis laxa syndrome

LTBP1 中的双等位基因过早截断变异导致皮肤松弛综合征

阅读:6
作者:Lore Pottie, Christin S Adamo, Aude Beyens, Steffen Lütke, Piyanoot Tapaneeyaphan, Adelbert De Clercq, Phil L Salmon, Riet De Rycke, Alper Gezdirici, Elif Yilmaz Gulec, Naz Khan, Jill E Urquhart, William G Newman, Kay Metcalfe, Stephanie Efthymiou, Reza Maroofian, Najwa Anwar, Shazia Maqbool, Fatima

Abstract

Latent transforming growth factor β (TGFβ)-binding proteins (LTBPs) are microfibril-associated proteins essential for anchoring TGFβ in the extracellular matrix (ECM) as well as for correct assembly of ECM components. Variants in LTBP2, LTBP3, and LTBP4 have been identified in several autosomal recessive Mendelian disorders with skeletal abnormalities with or without impaired development of elastin-rich tissues. Thus far, the human phenotype associated with LTBP1 deficiency has remained enigmatic. In this study, we report homozygous premature truncating LTBP1 variants in eight affected individuals from four unrelated consanguineous families. Affected individuals present with connective tissue features (cutis laxa and inguinal hernia), craniofacial dysmorphology, variable heart defects, and prominent skeletal features (craniosynostosis, short stature, brachydactyly, and syndactyly). In vitro studies on proband-derived dermal fibroblasts indicate distinct molecular mechanisms depending on the position of the variant in LTBP1. C-terminal variants lead to an altered LTBP1 loosely anchored in the microfibrillar network and cause increased ECM deposition in cultured fibroblasts associated with excessive TGFβ growth factor activation and signaling. In contrast, N-terminal truncation results in a loss of LTBP1 that does not alter TGFβ levels or ECM assembly. In vivo validation with two independent zebrafish lines carrying mutations in ltbp1 induce abnormal collagen fibrillogenesis in skin and intervertebral ligaments and ectopic bone formation on the vertebrae. In addition, one of the mutant zebrafish lines shows voluminous and hypo-mineralized vertebrae. Overall, our findings in humans and zebrafish show that LTBP1 function is crucial for skin and bone ECM assembly and homeostasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。