ARPC5 deficiency leads to severe early-onset systemic inflammation and mortality

ARPC5 缺陷导致严重的早发性全身炎症和死亡

阅读:5
作者:Elena Sindram, Andrés Caballero-Oteyza, Naoko Kogata, Shaina Chor Mei Huang, Zahra Alizadeh, Laura Gámez-Díaz, Mohammad Reza Fazlollhi, Xiao Peng, Bodo Grimbacher, Michael Way, Michele Proietti

Abstract

The Arp2/3 complex drives the formation of branched actin networks that are essential for many cellular processes. In humans, the ARPC5 subunit of the Arp2/3 complex is encoded by two paralogous genes (ARPC5 and ARPC5L) with 67% identity. Through whole-exome sequencing, we identified a biallelic ARPC5 frameshift variant in a female child who presented with recurrent infections, multiple congenital anomalies, diarrhea and thrombocytopenia, and suffered early demise from sepsis. Her consanguineous parents also had a previous child who died with similar clinical features. Using CRISPR/Cas9-mediated approaches, we demonstrate that loss of ARPC5 affects actin cytoskeleton organization and function in vitro. Homozygous Arpc5-/- mice do not survive past embryonic day 9 owing to developmental defects, including loss of the second pharyngeal arch, which contributes to craniofacial and heart development. Our results indicate that ARPC5 is important for both prenatal development and postnatal immune signaling, in a non-redundant manner with ARPC5L. Moreover, our observations add ARPC5 to the list of genes that should be considered when patients present with syndromic early-onset immunodeficiency, particularly if recessive inheritance is suspected.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。