Antisense lncRNA-RP11-498C9.13 promotes bladder cancer progression by enhancing reactive oxygen species-induced mitophagy

反义 lncRNA-RP11-498C9.13 通过增强活性氧诱导的线粒体自噬促进膀胱癌进展

阅读:5
作者:Wei Song, Zhuo Li, Ke Yang, Zhiyong Gao, Qiang Zhou, Ping Li

Background

Urinary system's most prevalent malignant tumor is bladder cancer. The enzyme pyrroline-5-carboxylate reductase 1 (PYCR1) has pro-tumorigenic characteristics. In the present study, the upstream and downstream regulatory mechanisms of PYCR1 in bladder cancer were investigated.

Conclusions

We demonstrated that lncRNA-RP11-498C9.13 promoted bladder cancer tumorigenesis by stabilizing the mRNA of PYCR1 and promoted ROS-induced mitophagy. The lncRNA-RP11-498C9.13/PYCR1/mitophagy axis was anticipated to be a significant therapeutic target for bladder cancer.

Methods

The relationship between the expression of PYCR1 in bladder cancer and its prognosis was analyzed using a bioinformatics technique. Plasmid transfection and small interfering RNA were utilized to overexpress and silence genes, respectively. Utilizing MTT, colony formation, EdU, and transwell assays, the proliferation and invasiveness of bladder cancer cells were evaluated. Employing an RNA pull-down experiment and RNA immunoprecipitation, the relationship between RNAs was analyzed. Fluorescence in situ hybridization, immunohistochemistry, and western blotting were used to detect protein expression and localization. Flow cytometry was used to identify reactive species (ROS) expression in cells. Mitophagy was detected using immunofluorescence.

Results

PYCR1 was highly expressed in bladder cancer tissue and was related with a poor prognosis for the patient. By binding to PYCR1, the antisense RNA lncRNA-RP11-498C9.13 prevented the degradation of PYCR1 and promoted its production. Down-regulation of lncRNA-RP11-498C9.13 and PYCR1 inhibited the proliferation and invasiveness of bladder cancer cells and decreased tumorigenesis. In addition, it was found that the lncRNA-RP11-498C9.13/PYCR1 axis promoted ROS generation and induced mitophagy in bladder cancer cells. Conclusions: We demonstrated that lncRNA-RP11-498C9.13 promoted bladder cancer tumorigenesis by stabilizing the mRNA of PYCR1 and promoted ROS-induced mitophagy. The lncRNA-RP11-498C9.13/PYCR1/mitophagy axis was anticipated to be a significant therapeutic target for bladder cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。