Tp47-Induced Monocyte-Derived Microvesicles Promote the Adherence of THP-1 Cells to Human Umbilical Vein Endothelial Cells via an ERK1/2-NF-κB Signaling Cascade

Tp47诱导的单核细胞衍生微泡通过ERK1/2-NF-κB信号级联促进THP-1细胞粘附于人脐静脉内皮细胞

阅读:7
作者:M Wang, J-W Xie, Y-W Zheng, X-T Wang, D-Y Yi, Y Lin, M-L Tong, L-R Lin

Abstract

The Treponema pallidum membrane protein Tp47 induces immunocyte adherence to vascular cells and contributes to vascular inflammation. However, it is unclear whether microvesicles are functional inflammatory mediators between vascular cells and immunocytes. Microvesicles that were isolated from Tp47-treated THP-1 cells using differential centrifugation were subjected to adherence assays to determine the adhesion-promoting effect on human umbilical vein endothelial cells (HUVECs). Intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) levels in Tp47-induced microvesicle (Tp47-microvesicle)-treated HUVECs were measured, and the related intracellular signaling pathways of Tp47-microvesicle-induced monocyte adhesion were investigated. Tp47-microvesicles promoted THP-1 cell adhesion to HUVECs (P < 0.01) and upregulated ICAM-1 and VCAM-1 expression in HUVECs (P < 0.001). The adhesion of THP-1 cells to HUVECs was inhibited by anti-ICAM-1 and anti-VCAM-1 neutralizing antibodies. Tp47-microvesicle treatment of HUVECs activated the extracellular signal-regulated kinase 1/2 (ERK1/2) and NF-κB signaling pathways, whereas ERK1/2 and NF-κB inhibition suppressed the expression of ICAM-1 and VCAM-1 and significantly decreased the adhesion of THP-1 cells to HUVECs. IMPORTANCE Tp47-microvesicles promote the adhesion of THP-1 cells to HUVECs through the upregulation of ICAM-1 and VCAM-1 expression, which is mediated by the activation of the ERK1/2 and NF-κB pathways. These findings provide insight into the pathophysiology of syphilitic vascular inflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。