Mitochondrial nucleoid remodeling and biogenesis are regulated by the p53-p21WAF1-PKCζ pathway in p16INK4a-silenced cells

在 p16INK4a 沉默细胞中,线粒体核苷重塑和生物合成受 p53-p21WAF1-PKCζ 通路调控

阅读:6
作者:Yun Yeong Lee, Yeon Seung Choi, Do Wan Kim, Jae Youn Cheong, Kye Yong Song, Min Sook Ryu, In Kyoung Lim

Abstract

Mitochondrial dysfunction is linked to age-related senescence phenotypes. We report here the pathway increasing nucleoid remodeling and biogenesis in mitochondria during the senescence of foreskin human diploid fibroblasts (fs-HDF) and WI-38 cells. Replicative senescence in fs-HDF cells increased mitochondrial nucleoid remodeling as indicated by 5-bromo-2'-deoxyuridine (BrdU) incorporation and mitochondrial transcription factor A (TFAM) expression in enlarged and fused mitochondria. Mitochondrial nucleoid remodeling was accompanied by mitochondrial biogenesis in old cells, and the expression levels of OXPHOS complex-I, -IV and -V subunits, PGC-1α and NRF1 were greatly increased compared to young cells. Activated protein kinase C zeta (PKCζ) increased mitochondrial activity and expressed phenotypes of delayed senescence in fs-HDF cells, but not in WI-38 cells. The findings were reproduced in the doxorubicin-induced senescence of young fs-HDF and WI-38 cells via the PKCζ-LKB1-AMPK signaling pathway, which was regulated by the p53-p21WAF1 pathway when p16INK4a was silenced. The signaling enhanced PGC-1α-NRF1-TFAM axis in mitochondria, which was demonstrated by Ingenuity Pathway Analysis of young and old fs-HDF cells. Activation of the p53-p21WAF1 pathway and silencing of p16INK4a are responsible for mitochondrial reprogramming in senescent cells, which may be a compensatory mechanism to promote cell survival under senescence stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。