Reversal of Triple-Negative Breast Cancer EMT by miR-200c Decreases Tryptophan Catabolism and a Program of Immunosuppression

miR-200c 逆转三阴性乳腺癌 EMT,降低色氨酸分解代谢和免疫抑制程序

阅读:6
作者:Thomas J Rogers, Jessica L Christenson, Lisa I Greene, Kathleen I O'Neill, Michelle M Williams, Michael A Gordon, Travis Nemkov, Angelo D'Alessandro, Greg D Degala, Jimin Shin, Aik-Choon Tan, Diana M Cittelly, James R Lambert, Jennifer K Richer

Abstract

Tryptophan-2,3-dioxygenase (TDO2), a rate-limiting enzyme in the tryptophan catabolism pathway, is induced in triple-negative breast cancer (TNBC) by inflammatory signals and anchorage-independent conditions. TNBCs express extremely low levels of the miR-200 family compared with estrogen receptor-positive (ER+) breast cancer. In normal epithelial cells and ER+ breast cancers and cell lines, high levels of the family member miR-200c serve to target and repress genes involved in epithelial-to-mesenchymal transition (EMT). To identify mechanism(s) that permit TNBC to express TDO2 and other proteins not expressed in the more well-differentiated ER+ breast cancers, miRNA-200c was restored in TNBC cell lines. The data demonstrate that miR-200c targeted TDO2 directly resulting in reduced production of the immunosuppressive metabolite kynurenine. Furthermore, in addition to reversing a classic EMT signature, miR-200c repressed many genes encoding immunosuppressive factors including CD274/CD273, HMOX-1, and GDF15. Restoration of miR-200c revealed a mechanism, whereby TNBC hijacks a gene expression program reminiscent of that used by trophoblasts to suppress the maternal immune system to ensure fetal tolerance during pregnancy. IMPLICATIONS: Knowledge of the regulation of tumor-derived immunosuppressive factors will facilitate development of novel therapeutic strategies that complement current immunotherapy to reduce mortality for patients with TNBC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。