The piperine derivative HJ105 inhibits Aβ1-42-induced neuroinflammation and oxidative damage via the Keap1-Nrf2-TXNIP axis

胡椒碱衍生物 HJ105 通过 Keap1-Nrf2-TXNIP 轴抑制 Aβ1-42 诱导的神经炎症和氧化损伤

阅读:4
作者:Xiping Yang, Jingke Zhi, Haifeng Leng, Yu Chen, Haoran Gao, Jinming Ma, Jing Ji, Qinghua Hu

Background

Piperine is a great lead compound, as a phytopharmaceutical with reported neuroprotective effects in neurodegenerative diseases. HJ105, a piperine derivative with high affinity to Keap1 receptor, attracts increasing attention in Alzheimer's disease (AD) treatment.

Conclusion

Overall, HJ105 exerts neuroprotective effects in SH-SY5Y cells induced by Aβ1-42 as well as in experimental rats with AD by decreasing apoptosis, oxidative stress and neuroinflammation, partly via suppression of Keap1-Nrf2 complex generation. HJ105 might represent a promising compound for AD treatment.

Methods

In the in vivo part, a rat model of AD was established by bilateral intra-hippocampal administration of aggregated Aβ1-42, followed by a month of intragastric HJ105 or donepezil administration. Spatial and learning memories were detected by the Morris water maze assay, passive avoidance learning as well as Y-maze test. The morphology of hippocampal neurons was assessed by hematoxylin-eosin (H&E) staining. In addition, the amounts of the IL-1β and TNF-α were obtained with specific ELISA kits. More importantly, apoptosis-related proteins and factors involved in Nrf2/TXNIP/NLPR3 pathways were detected by Western blot, while the interaction between Keap1 and Nrf2 was assessed by co-immunoprecipitation. In the in vitro part, human neuroblastoma (SH-SY5Y) cells were applied to evaluate the role of HJ105 on Aβ1-42-induced neuronal damage.

Purpose

This work mainly aimed to study HJ105's therapeutic effects on Aβ1-42-associated AD and the underpinning mechanisms.

Results

Treatment of HJ105 not only reversed memory impairment, but also protected neurons in the hippocampus by inhibiting Bax/Bcl2 ratio increase. HJ105 decreased TXNIP expression, suppressing NLRP3 inflammasome activation in the hippocampus, which in turn counteracted the upregulation of IL-1β and TNF-α. Notably, HJ105 exerted an inhibitory effect on Keap1-Nrf2 interaction and upregulated nuclear Nrf2, which conversely increased the expression levels of superoxide dismutase, catalase and glutathione peroxidase and downregulated malondialdehyde. Additionally, neurotoxicity induced by Aβ1-42 in SH-SY5Y cells was alleviated by HJ105.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。