Molecular cloning and knockdown of galactocerebrosidase in zebrafish: new insights into the pathogenesis of Krabbe's disease

斑马鱼半乳糖脑苷脂酶的分子克隆与敲低:对克拉伯病发病机制的新见解

阅读:6
作者:Daniela Zizioli, Michela Guarienti, Chiara Tobia, Giuseppina Gariano, Giuseppe Borsani, Roberto Bresciani, Roberto Ronca, Edoardo Giacopuzzi, Augusto Preti, Germano Gaudenzi, Mirella Belleri, Emanuela Di Salle, Gemma Fabrias, Josefina Casas, Domenico Ribatti, Eugenio Monti, Marco Presta

Abstract

The lysosomal hydrolase galactocerebrosidase (GALC) catalyzes the removal of galactose from galactosylceramide and from other sphingolipids. GALC deficiency is responsible for globoid cell leukodystrophy (GLD), or Krabbe's disease, an early lethal inherited neurodegenerative disorder characterized by the accumulation of the neurotoxic metabolite psychosine in the central nervous system (CNS). The poor outcome of current clinical treatments calls for novel model systems to investigate the biological impact of GALC down-regulation and for the search of novel therapeutic strategies in GLD. Zebrafish (Danio rerio) represents an attractive vertebrate model for human diseases. Here, lysosomal GALC activity was demonstrated in the brain of zebrafish adults and embryos. Accordingly, we identified two GALC co-orthologs (named galca and galcb) dynamically co-expressed in CNS during zebrafish development. Both genes encode for lysosomal enzymes endowed with GALC activity. Single down-regulation of galca or galcb by specific antisense morpholino oligonucleotides results in a partial decrease of GALC activity in zebrafish embryos that was abrogated in double galca/galcb morphants. However, no psychosine accumulation was observed in galca/galcb double morphants. Nevertheless, double galca/galcb knockdown caused reduction and partial disorganization of the expression of the early neuronal marker neuroD and an increase of apoptotic events during CNS development. These observations provide new insights into the pathogenesis of GLD, indicating that GALC loss-of-function may have pathological consequences in developing CNS independent of psychosine accumulation. Also, they underscore the potentiality of the zebrafish system in studying the pathogenesis of lysosomal neurodegenerative diseases, including GLD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。