Human Ubiquilin 2 and TDP-43 copathology drives neurodegeneration in transgenic Caenorhabditis elegans

人类泛素 2 和 TDP-43 共病理学驱动转基因秀丽隐杆线虫的神经退行性变

阅读:5
作者:Aleen D Saxton, Brian C Kraemer

Abstract

Amyotrophic lateral sclerosis (ALS) is a debilitating, fatal neurodegenerative disease that causes rapid muscle wasting. It shares a spectrum of symptoms and pathology with frontotemporal lobar degeneration (FTLD). These diseases are caused by aberrant activity of a set of proteins including TDP-43 and UBIQUILIN-2 (UBQLN2). UBQLN2 encodes a ubiquitin-like adaptor protein involved in the ubiquitin-proteasome protein degradation pathway. Mutations in the PXX domain of UBQLN2 cause familial ALS. UBQLN2 aggregates in skein-like inclusions with other ALS and FTLD associated proteins including TDP-43 and ubiquitin. To facilitate further investigation of UBQLN2-mediated mechanisms of neurodegeneration, we made Caenorhabditis elegans transgenic lines pan-neuronally expressing human UBQLN2 cDNAs carrying either the wild-type UBQLN2 sequence or UBQLN2 with ALS causing mutations. Transgenic animals exhibit motor dysfunction accompanied by neurodegeneration of GABAergic motor neurons. At low levels of UBQLN2 expression, wild-type UBQLN2 causes significant motor impairment and neurodegeneration that is exacerbated by ALS associated mutations in UBQLN2. At higher levels of UBQLN2 expression, both wild-type and ALS mutated versions of UBQLN2 cause severe impairment. Molecular genetic investigation revealed that UBQLN2 dependent locomotor defects do not require the involvement of the endogenous homolog of TDP-43 in C. elegans (tdp-1). However, co-expression of wild-type human TDP-43 exacerbates UBQLN2 deficits. This model of UBQLN2-mediated neurodegeneration may be useful for further mechanistic investigation into the molecular cascades driving neurodegeneration in ALS and ALS-FTLD.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。