Human Ubiquilin 2 and TDP-43 copathology drives neurodegeneration in transgenic Caenorhabditis elegans

人类泛素 2 和 TDP-43 共病理学驱动转基因秀丽隐杆线虫的神经退行性变

阅读:16
作者:Aleen D Saxton, Brian C Kraemer

Abstract

Amyotrophic lateral sclerosis (ALS) is a debilitating, fatal neurodegenerative disease that causes rapid muscle wasting. It shares a spectrum of symptoms and pathology with frontotemporal lobar degeneration (FTLD). These diseases are caused by aberrant activity of a set of proteins including TDP-43 and UBIQUILIN-2 (UBQLN2). UBQLN2 encodes a ubiquitin-like adaptor protein involved in the ubiquitin-proteasome protein degradation pathway. Mutations in the PXX domain of UBQLN2 cause familial ALS. UBQLN2 aggregates in skein-like inclusions with other ALS and FTLD associated proteins including TDP-43 and ubiquitin. To facilitate further investigation of UBQLN2-mediated mechanisms of neurodegeneration, we made Caenorhabditis elegans transgenic lines pan-neuronally expressing human UBQLN2 cDNAs carrying either the wild-type UBQLN2 sequence or UBQLN2 with ALS causing mutations. Transgenic animals exhibit motor dysfunction accompanied by neurodegeneration of GABAergic motor neurons. At low levels of UBQLN2 expression, wild-type UBQLN2 causes significant motor impairment and neurodegeneration that is exacerbated by ALS associated mutations in UBQLN2. At higher levels of UBQLN2 expression, both wild-type and ALS mutated versions of UBQLN2 cause severe impairment. Molecular genetic investigation revealed that UBQLN2 dependent locomotor defects do not require the involvement of the endogenous homolog of TDP-43 in C. elegans (tdp-1). However, co-expression of wild-type human TDP-43 exacerbates UBQLN2 deficits. This model of UBQLN2-mediated neurodegeneration may be useful for further mechanistic investigation into the molecular cascades driving neurodegeneration in ALS and ALS-FTLD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。