Protracted CLN3 Batten disease in mice that genetically model an exon-skipping therapeutic approach

小鼠中长期 CLN3 巴顿病的遗传模型为外显子跳跃治疗方法

阅读:7
作者:Jessica L Centa, Matthew P Stratton, Melissa A Pratt, Jenna R Osterlund Oltmanns, Douglas G Wallace, Steven A Miller, Jill M Weimer, Michelle L Hastings

Abstract

Genetic mutations that disrupt open reading frames and cause translation termination are frequent causes of human disease and are difficult to treat due to protein truncation and mRNA degradation by nonsense-mediated decay, leaving few options for traditional drug targeting. Splice-switching antisense oligonucleotides offer a potential therapeutic solution for diseases caused by disrupted open reading frames by inducing exon skipping to correct the open reading frame. We have recently reported on an exon-skipping antisense oligonucleotide that has a therapeutic effect in a mouse model of CLN3 Batten disease, a fatal pediatric lysosomal storage disease. To validate this therapeutic approach, we generated a mouse model that constitutively expresses the Cln3 spliced isoform induced by the antisense molecule. Behavioral and pathological analyses of these mice demonstrate a less severe phenotype compared with the CLN3 disease mouse model, providing evidence that antisense oligonucleotide-induced exon skipping can have therapeutic efficacy in treating CLN3 Batten disease. This model highlights how protein engineering through RNA splicing modulation can be an effective therapeutic approach.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。