Significance
In present study, we generate three-dimensional photocrosslinkable gelatin (GelMA)-based fibrous scaffolds with tunable physical and biological properties by using a combined photocrosslinking/electrospinning approach. The developed GelMA fibrous scaffolds can not only support cell viability and cell adhesion, but also facilitate cell migration and proliferation, accelerating regeneration and formation of cutaneous tissues. In addition, the physical properties of the engineered fibrous GelMA hydrogel including water retention capability, mechanical properties and biodegradability can be tuned to accommodate different patients' needs, making it a promising candidate for skin tissue engineering.
Statement of significance
In present study, we generate three-dimensional photocrosslinkable gelatin (GelMA)-based fibrous scaffolds with tunable physical and biological properties by using a combined photocrosslinking/electrospinning approach. The developed GelMA fibrous scaffolds can not only support cell viability and cell adhesion, but also facilitate cell migration and proliferation, accelerating regeneration and formation of cutaneous tissues. In addition, the physical properties of the engineered fibrous GelMA hydrogel including water retention capability, mechanical properties and biodegradability can be tuned to accommodate different patients' needs, making it a promising candidate for skin tissue engineering.
