Design, development, and characterization of lipid nanocarriers-based epigallocatechin gallate delivery system for preventive and therapeutic supplementation

基于脂质纳米载体的表没食子儿茶素没食子酸酯递送系统的设计、开发和表征,用于预防和治疗补充

阅读:4
作者:Iúri Frias, Ana Rute Neves, Marina Pinheiro, Salette Reis

Abstract

Green tea is manufactured from the leaves of Camellia sinensis and has been shown to possess, among other properties, anticancer, antiobesity, antiatherosclerotic, antidiabetic, antibacterial, and antiviral effects. The beneficial effects of green tea are related to the activities of (-)-epigallocatechin gallate (EGCG). This catechin is very unstable, undergoing degradation and epimerization, which is responsible for the loss of its health benefits. Encapsulation in nanoparticles (NPs) is an effective method to protect EGCG from adverse environmental conditions. In this work, solid lipid NPs (SLN) and nanostructured lipid carriers (NLC) were successfully developed to be used as biocompatible nanocarriers, enhancing the stability of EGCG. The mean diameter of the NPs was found to be around 300-400 nm, which is suitable for oral administration. Moreover, EGCG was effectively encapsulated with a remarkable efficiency of encapsulation of 80% and 90% for SLN and NLC, respectively. In addition, high storage stability of the formulations is expected as they maintain the initial characteristics for 3 months. Limited release of EGCG from the NPs was observed in simulated gastric and intestinal fluids. MTT and lactate dehydrogenase (LDH) assays demonstrated that NPs possess low toxicity, and so have potential to be used for preventive and therapeutic EGCG supplementation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。