Effect of Aldosterone on Senescence and Proliferation Inhibition of Endothelial Progenitor Cells Induced by Sirtuin 1 (SIRT1) in Pulmonary Arterial Hypertension

醛固酮对肺动脉高压患者Sirtuin 1(SIRT1)诱导的内皮祖细胞衰老及增殖抑制的影响

阅读:5
作者:Yue Wang, Bin Zhong, Qiyong Wu, Jichun Tong, Tao Zhu, Ming Zhang

Abstract

BACKGROUND Pulmonary arterial hypertension (PAH) is characterized by a progressive increase in pulmonary circulatory resistance. Pulmonary vascular endothelial dysfunction is one of the main causes of primary PAH. Endothelial progenitor cells (EPCs) can proliferate and differentiate into vascular endothelial cells and play an important role in maintaining normal endothelial function. Mineralocorticoid receptor inhibitor has been reported to be used in the treatment of PAH. However, the role and the underlying mechanism of aldosterone (ALDO) in PAH remains unclear. MATERIAL AND METHODS Rats were divided to 4 groups (n=10 per group) and treated with 0.9% normal saline, monocrotaline (MCT), spironolactone (SP), or MCT combined with SP. After the rats were sacrificed with an overdose of pentobarbital sodium, hematoxylin and eosin staining was performed to observe the pulmonary artery pathology section. Sirtuin 1 (SIRT1), p53, and p21 protein expression was detect by western blot. Immunofluorescence staining was performed to verify EPCs. EPCs were treated with different concentrations of ALDO. MTT assay and senescence-associated ß-galactosidase staining were used to measure cell viability and senescence. RESULTS MCT increased the vascular arterial wall thickness and wall area, inhibited SIRT1 protein expression and increased p53 and p21 protein expression in the lung tissue of rats, while SP partially reversed this effect. In addition, ALDO inhibited EPCs viability and induced senescence. The expression of p53 and p21 proteins in the EPCs were upregulated and the senescence was accelerated when EPCs were transfected with SIRT1 siRNA. CONCLUSIONS ALDO promoted EPCs senescence and inhibited EPCs proliferation by downregulating SIRT1, which regulates the p53/p21 pathway, thus promoting PAH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。