The impact of geography and climate on the population structure and local adaptation in a wild bee

地理和气候对野生蜜蜂种群结构和局部适应的影响

阅读:5
作者:Farida Samad-Zada, Evan P Kelemen, Sandra M Rehan

Abstract

Deciphering processes that contribute to genetic differentiation and divergent selection of natural populations is useful for evaluating the adaptive potential and resilience of organisms faced with various anthropogenic stressors. Insect pollinator species, including wild bees, provide critical ecosystem services but are highly susceptible to biodiversity declines. Here, we use population genomics to infer the genetic structure and test for evidence of local adaptation in an economically important native pollinator, the small carpenter bee (Ceratina calcarata). Using genome-wide SNP data (n = 8302), collected from specimens across the species' entire distribution, we evaluated population differentiation and genetic diversity and identified putative signatures of selection in the context of geographic and environmental variation. Results of the analyses of principal component and Bayesian clustering were concordant with the presence of two to three genetic clusters, associated with landscape features and inferred phylogeography of the species. All populations examined in our study demonstrated a heterozygote deficit, along with significant levels of inbreeding. We identified 250 robust outlier SNPs, corresponding to 85 annotated genes with known functional relevance to thermoregulation, photoperiod, and responses to various abiotic and biotic stressors. Taken together, these data provide evidence for local adaptation in a wild bee and highlight genetic responses of native pollinators to landscape and climate features.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。