Cavin-2 loss exacerbates hypoxia-induced pulmonary hypertension with excessive eNOS phosphorylation and protein nitration

Cavin-2 损失加剧了缺氧引起的肺动脉高压,导致 eNOS 磷酸化和蛋白质硝化过度

阅读:6
作者:Takeru Kasahara, Takehiro Ogata, Naohiko Nakanishi, Shinya Tomita, Yusuke Higuchi, Naoki Maruyama, Tetsuro Hamaoka, Satoaki Matoba

Abstract

Pulmonary hypertension (PH) is associated with a poor prognosis even in recent years. Caveolin-1 (CAV1), a caveolae-associated protein, is a causal gene in PH. Cavin-2, one of the other caveolae-associated proteins, forms protein complexes with CAV1 and influences each other's functions. However, the role of Cavin-2 in PH has not been thoroughly investigated. To clarify the role of Cavin-2 in PH, we exposed Cavin-2-deficient (Cavin-2 KO) mice to hypoxia. A part of the analyses was confirmed in human pulmonary endothelial cells (HPAECs). After 4-week 10% O2 hypoxic exposure, we performed physiological, histological, and immunoblotting analyses. Right ventricular (RV) systolic pressure elevation and RV hypertrophy were exacerbated in Cavin-2 KO mice with hypoxia-induced PH (Cavin-2 KO PH mice). The vascular wall thickness of pulmonary arterioles was aggravated in Cavin-2 KO PH mice. Cavin-2 loss reduced CAV1 and induced sustained endothelial nitric oxide synthase (eNOS) hyperphosphorylation in the Cavin-2 KO PH lungs and HPAECs. NOx production associated with eNOS phosphorylation was also increased in the Cavin-2 KO PH lung and HPAECs. Furthermore, the nitration of proteins, including protein kinase G (PKG), was raised in the Cavin-2 KO PH lungs. In conclusion, we revealed that Cavin-2 loss exacerbated hypoxia-induced PH. Our results suggest that Cavin-2 loss leads to sustained eNOS hyperphosphorylation in pulmonary artery endothelial cells via CAV1 reduction, resulting in Nox overproduction-mediated nitration of proteins, including PKG, in smooth muscle cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。