Rnf220 cooperates with Zc4h2 to specify spinal progenitor domains

Rnf220 与 Zc4h2 合作指定脊髓祖细胞域

阅读:5
作者:Jumee Kim, Tae-Ik Choi, Shinhye Park, Myung Hee Kim, Cheol-Hee Kim, Seunghee Lee

Abstract

During early embryonic development of the spinal cord, graded sonic hedgehog signaling establishes distinct ventral progenitor domains by regulating the spatiotemporal expression of fate-specifying transcription factors. However, regulation of their protein stability remains incompletely understood. Here, we show that RNF220, an E3 ubiquitin ligase, plays crucial roles in the generation of the ventral progenitor domains, which produce ventral interneurons and motor neurons, by targeting key transcription factors including Dbx1/2 and Nkx2.2 for degradation. Surprisingly, RNF220 interacts with, and is co-expressed with, a zinc-finger protein ZC4H2, and they cooperate to degrade Dbx1/2 and Nkx2.2. RNF220-null mice show widespread alterations of ventral progenitor domains, including the loss of the p2 domain that produces V2 interneurons. Knockdown of RNF220 and ZC4H2 in the chick spinal cord downregulates expression of the V2 interneuronal marker Chx10. Co-expression of RNF220 and ZC4H2 further promotes the ability of Nkx6.1 to induce ectopic Chx10+ V2 interneurons. Our results uncover a novel regulatory pathway in establishing distinct progenitor domains through modulating the protein stability of transcription factors. Our results provide insights into the molecular mechanism by which ZC4H2 mutations lead to human syndromes characterized by delayed motor development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。