Design, Synthesis and Biological Evaluation of New 3,4-Dihydro-2(1 H)-Quinolinone-Dithiocarbamate Derivatives as Multifunctional Agents for the Treatment of Alzheimer's Disease

新型 3,4-二氢-2(1 H)-喹啉酮-二硫代氨基甲酸酯衍生物的设计、合成及作为治疗阿尔茨海默病多功能药物的生物学评价

阅读:5
作者:Jie Guo #, Airen Xu #, Maojun Cheng, Yang Wan, Rikang Wang, Yuanying Fang, Yi Jin, Sai-Sai Xie, Jing Liu

Background

Alzheimer's disease (AD) belongs to neurodegenerative disease, and the increasing number of AD patients has placed a heavy burden on society, which needs to be addressed urgently. ChEs/MAOs dual-target inhibitor has potential to treat AD according to reports.

Conclusion

This work indicated that compound 3e with a six-carbon atom linker and a piperidine moiety at terminal position was a promising candidate and was worthy of further study.

Methods

All compounds were evaluated for their inhibitory abilities of ChEs and MAOs. Then, further biological activities of the most promising candidate 3e were determined, including the ability to cross the blood-brain barrier (BBB), kinetics and molecular model analysis, cytotoxicity in vitro and acute toxicity studies in vivo.

Purpose

To obtain effective multi-targeted agents for the treatment of AD, a novel series of hybrid compounds were designed and synthesized by fusing the pharmacophoric features of 3,4-dihydro-2 (1H)-quinolinone and dithiocarbamate.

Results

Most compounds showed potent and clear inhibition to AChE and MAOs. Among them, compound 3e was considered to be the most effective and balanced inhibitor to both AChE and MAOs (IC50=0.28 µM to eeAChE; IC50=0.34 µM to hAChE; IC50=2.81 µM to hMAO-B; IC50=0.91 µM to hMAO-A). In addition, 3e showed mixed inhibition of hAChE and competitive inhibition of hMAO-B in the enzyme kinetic studies. Further studies indicated that 3e could penetrate the BBB and showed no toxicity on PC12 cells and HT-22 cells when the concentration of 3e was lower than 12.5 µM. More importantly, 3e lacked acute toxicity in mice even at high dose (2500 mg/kg, P.O.).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。