An infrared spectral biomarker accurately predicts neurodegenerative disease class in the absence of overt symptoms

红外光谱生物标志物可在没有明显症状的情况下准确预测神经退行性疾病类型

阅读:7
作者:Lila Lovergne #, Dhruba Ghosh #, Renaud Schuck #, Aris A Polyzos #, Andrew D Chen, Michael C Martin, Edward S Barnard, James B Brown, Cynthia T McMurray

Abstract

Although some neurodegenerative diseases can be identified by behavioral characteristics relatively late in disease progression, we currently lack methods to predict who has developed disease before the onset of symptoms, when onset will occur, or the outcome of therapeutics. New biomarkers are needed. Here we describe spectral phenotyping, a new kind of biomarker that makes disease predictions based on chemical rather than biological endpoints in cells. Spectral phenotyping uses Fourier Transform Infrared (FTIR) spectromicroscopy to produce an absorbance signature as a rapid physiological indicator of disease state. FTIR spectromicroscopy has over the past been used in differential diagnoses of manifest disease. Here, we report that the unique FTIR chemical signature accurately predicts disease class in mouse with high probability in the absence of brain pathology. In human cells, the FTIR biomarker accurately predicts neurodegenerative disease class using fibroblasts as surrogate cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。