LncRNA-H19 induces hepatic stellate cell activation via upregulating alcohol dehydrogenase III-mediated retinoic acid signals

LncRNA-H19 通过上调乙醇脱氢酶 III 介导的视黄酸信号诱导肝星状细胞活化

阅读:4
作者:Zhi-Min Wang, Si-Wei Xia, Tian Zhang, Zhen-Yi Wang, Xiang Yang, Jun Kai, Xu-Dong Cheng, Jiang-Juan Shao, Shan-Zhong Tan, An-Ping Chen, Shi-Jun Wang, Feng Zhang, Zi-Li Zhang, Shi-Zhong Zheng

Abstract

Activation of hepatic stellate cells (HSCs) is a pivotal event in liver fibrosis, characterized by enhanced retinoic acid signals. Although up-regulated retinoic acid signal responds further to maintain HSC activation, the underlying molecular mechanisms are largely unknown. In this study, we sought to investigate the role of lncRNA-H19 in regulation of retinoic acid signals, and to further examine the underlying mechanism in this molecular context. We found that lncRNA-H19 upregulation could enhance retinoic acid signals to induce HSC activation, whereas lncRNA-H19 knockdown completely disturbed retinoic acid signals. Moreover, the activation of retinoic acid signals impaired the lncRNA-H19 knockdown mediated HSC inactivation. Interestingly, we also found that enhanced retinoic acid signals by lncRNA-H19 was associated with a coordinate increase in retinol metabolism during HSC activation. Increased retinol metabolism contributed to obvious lipid droplet consumption. Importantly, we identified that alcohol dehydrogenase III (ADH3) was essential for lncRNA-H19 to enhance retinoic acid signals. The inhibition of ADH3 completely abrogated the lncRNA-H19 mediated retinoic acid signals and HSC activation. Of note, we identified dihydroartemisinin (DHA) as a natural inhibitor for lncRNA-H19. Treatment with DHA significantly decreased the expression of lncRNA-H19, reduced the expression of ADH3, blocked retinoic acid signals, and in turn, inhibited HSC activation. Overall, these results provided novel implications to reveal the molecular mechanism of increased retinoic acid signals during HSC activation, and identify lncRNA-H19/ADH3 pathway as a potential target for the treatment of liver fibrosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。