The transcription factor T-box 3 regulates colony-stimulating factor 1-dependent Jun dimerization protein 2 expression and plays an important role in osteoclastogenesis

转录因子T-box 3调节集落刺激因子1依赖的Jun二聚化蛋白2的表达,在破骨细胞生成中起重要作用

阅读:5
作者:Chen Yao, Gang-Qing Yao, Ben-Hua Sun, Changqing Zhang, Steven M Tommasini, Karl Insogna

Abstract

Colony-stimulating factor 1 (CSF1) is known to promote osteoclast progenitor survival, but its roles in osteoclast differentiation and mature osteoclast function are less well understood. In a microarray screen, Jun dimerization protein 2 (JDP2) was identified as significantly induced by CSF1. Recent reports indicate that JDP2 is required for normal osteoclastogenesis and skeletal metabolism. Because there are no reports on the transcriptional regulation of this gene, the DNA sequence from -2612 to +682 bp (relative to the transcription start site) of the JDP2 gene was cloned, and promoter activity was analyzed. The T box-binding element (TBE) between -191 and -141 bp was identified as the cis-element responsible for CSF1-dependent JDP2 expression. Using degenerate PCR, Tbx3 was identified as the major isoform binding the TBE. Overexpression of Tbx3 induced JDP2 promoter activity, whereas suppressing Tbx3 expression substantially attenuated CSF1-induced transcription. Suppressing Tbx3 in osteoclast precursors reduced JDP2 expression and significantly impaired RANKL/CSF1-induced osteoclastogenesis. A MEK1/2-specific inhibitor was found to block CSF1-induced JDP2 expression. Consistent with these data, JDP2(-/-) mice were found to have increased bone mass. In summary, CSF1 up-regulates JDP2 expression by inducing Tbx3 binding to the JDP2 promoter. The downstream signaling cascade from activated c-Fms involves the MEK1/2-ERK1/2 pathway. Tbx3 plays an important role in osteoclastogenesis at least in part by regulating CSF1-dependent expression of JDP2.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。