Conclusions
By adding rapamycin during the OTCTP procedure, we were able to transiently maintain primordial follicles in a quiescent state. This is a promising method for improving the longevity of the ovarian graft. Furthermore, both the ear and kidney capsule transplantation models were suitable for investigating follicle activation and proliferation and pharmacological strategies.
Methods
To study the effects of adding rapamycin during cryopreservation, 4-week-old C57BL/6 mouse ovaries, either fresh, slow-frozen, or slow-frozen with rapamycin, were autotransplanted under the kidney capsule of mice and recovered three weeks later for immunohistochemical (IHC) analysis. To compare the ear with the kidney capsule transplantation model, fresh 4-week-old C57BL/6 mouse ovaries were autotransplanted to either site, followed by an injection of either LY294002, a PI3K inhibitor, vehicle control, or neither, and these were recovered three weeks later for IHC analysis.
Results
Rapamycin counteracts cryopreservation-induced follicle proliferation, as well as AKT and mTOR pathway activation, in ovaries autotransplanted for three weeks under the kidney capsule of mice. Analyses of follicle proliferation, mTOR activation, and the effects of LY294002 treatment were similar in transplanted ovaries using either the ear or kidney capsule transplantation model. Conclusions: By adding rapamycin during the OTCTP procedure, we were able to transiently maintain primordial follicles in a quiescent state. This is a promising method for improving the longevity of the ovarian graft. Furthermore, both the ear and kidney capsule transplantation models were suitable for investigating follicle activation and proliferation and pharmacological strategies.
