Network of mutually repressive metastasis regulators can promote cell heterogeneity and metastatic transitions

相互抑制的转移调节器网络可以促进细胞异质性和转移转变

阅读:4
作者:Jiyoung Lee, Jinho Lee, Kevin S Farquhar, Jieun Yun, Casey A Frankenberger, Elena Bevilacqua, Kam Yeung, Eun-Jin Kim, Gábor Balázsi, Marsha Rich Rosner

Abstract

The sources and consequences of nongenetic variability in metastatic progression are largely unknown. To address these questions, we characterized a transcriptional regulatory network for the metastasis suppressor Raf kinase inhibitory protein (RKIP). We previously showed that the transcription factor BACH1 is negatively regulated by RKIP and promotes breast cancer metastasis. Here we demonstrate that BACH1 acts in a double-negative (overall positive) feedback loop to inhibit RKIP transcription in breast cancer cells. BACH1 also negatively regulates its own transcription. Analysis of the BACH1 network reveals the existence of an inverse relationship between BACH1 and RKIP involving both monostable and bistable transitions that can potentially give rise to nongenetic variability. Single-cell analysis confirmed monostable and bistable-like behavior. Treatment with histone deacetylase inhibitors or depletion of the polycomb repressor enhancer of zeste homolog 2 altered relative RKIP and BACH1 levels in a manner consistent with a prometastatic state. Together, our results suggest that the mutually repressive relationship between metastatic regulators such as RKIP and BACH1 can play a key role in determining metastatic progression in cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。