Smad3 Regulates Neuropilin 2 Transcription by Binding to its 5' Untranslated Region

Smad3 通过结合其 5' 非翻译区来调节神经纤毛蛋白 2 的转录

阅读:8
作者:Xiujie Xie, Go Urabe, Lynn Marcho, Corey Williams, Lian-Wang Guo, K Craig Kent

Abstract

Background Vascular smooth muscle cell phenotypic change and consequential intimal hyperplasia (IH) cause arterial stenosis and posttreatment restenosis. Smad3 is a master transcription factor, yet its underlying functional mechanisms in this disease context are not well defined. Methods and Results In cultured smooth muscle cells, Smad3 silencing and overexpression respectively reduced and increased the mRNA and protein of NRP2 (neuropilin 2), a recently reported pro-IH signaling factor. Smad3 silencing attenuated pro-IH smooth muscle cell phenotypes including proliferation, migration, and dedifferentiation (reduced smooth muscle α-actin). While increased Smad3 enhanced these phenotypes, NRP2 silencing abolished this enhancement. Interestingly, the 5' untranslated region but not the promoter of NRP2 was indispensable for Smad3-enhanced transcriptional activity (luciferase assay); both chromatin immunoprecipitation and electrophoretic mobility shift assay showed predominant Smad3 binding in the +51 to +78 bp region of NRP2's 5' untranslated region. In vivo, Smad3 haploinsufficiency reduced NRP2 (immunostaining) and IH (by 47%) in wire-injured mouse femoral arteries. Conclusions Smad3 controls NRP2 expression by occupying its 5' untranslated region in promoting smooth muscle cell phenotypic change in vitro. This and in vivo results shed new light on the long-debated role of Smad3 in IH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。