Deficiency of PSRC1 accelerates atherosclerosis by increasing TMAO production via manipulating gut microbiota and flavin monooxygenase 3

PSRC1 缺乏会通过操纵肠道微生物群和黄素单加氧酶 3 增加 TMAO 的产生,从而加速动脉粥样硬化的形成

阅读:4
作者:Tiantian Luo, Zhigang Guo, Dan Liu, Zhongzhou Guo, Qiao Wu, Qinxian Li, Rongzhan Lin, Peier Chen, Caiwen Ou, Minsheng Chen

Abstract

Maladaptive inflammatory and immune responses are responsible for intestinal barrier integrity and function dysregulation. Proline/serine-rich coiled-coil protein 1 (PSRC1) critically contributes to the immune system, but direct data on the gut microbiota and the microbial metabolite trimethylamine N-oxide (TMAO) are lacking. Here, we investigated the impact of PSRC1 deletion on TMAO generation and atherosclerosis. We first found that PSRC1 deletion in apoE-/- mice accelerated atherosclerotic plaque formation, and then the gut microbiota and metabolites were detected using metagenomics and untargeted metabolomics. Our results showed that PSRC1 deficiency enriched trimethylamine (TMA)-producing bacteria and functional potential for TMA synthesis and accordingly enhanced plasma betaine and TMAO production. Furthermore, PSRC1 deficiency resulted in a proinflammatory colonic phenotype that was significantly associated with the dysregulated bacteria. Unexpectedly, hepatic RNA-seq indicated upregulated flavin monooxygenase 3 (FMO3) expression following PSRC1 knockout. Mechanistically, PSRC1 overexpression inhibited FMO3 expression in vitro, while an ERα inhibitor rescued the downregulation. Consistently, PSRC1-knockout mice exhibited higher plasma TMAO levels with a choline-supplemented diet, which was gut microbiota dependent, as evidenced by antibiotic treatment. To investigate the role of dysbiosis induced by PSRC1 deletion in atherogenesis, apoE-/- mice were transplanted with the fecal microbiota from either apoE-/- or PSRC1-/-apoE-/- donor mice. Mice that received PSRC1-knockout mouse feces showed an elevation in TMAO levels, as well as plaque lipid deposition and macrophage accumulation, which were accompanied by increased plasma lipid levels and impaired hepatic cholesterol transport. Overall, we identified PSRC1 as an atherosclerosis-protective factor, at least in part, attributable to its regulation of TMAO generation via a multistep pathway. Thus, PSRC1 holds great potential for manipulating the gut microbiome and alleviating atherosclerosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。