Incaspitolide A isolated from Carpesium cernuum L. inhibits the growth of prostate cancer cells and induces apoptosis via regulation of the PI3K/Akt/xIAP pathway

从 Carpesium cernuum L. 中分离的 Incaspitolide A 可通过调节 PI3K/Akt/xIAP 通路抑制前列腺癌细胞的生长并诱导细胞凋亡

阅读:6
作者:Yuanshe Huang, Jingxin Mao, Lai Zhang, Hongwei Guo, Chen Yan, Min Chen

Abstract

Carpesium cernuum L. is a traditional medicine primarily used in Southwestern China, and it has been shown to exhibit a range of biological properties, including anti-inflammatory and antitumor activities. Incaspitolide A (IA) is a sesquiterpene isolated from C. cernuum L. The aim of the present study was to investigate the antiproliferative effects of IA on PC-3 prostate cancer cells and determine the underlying mechanism. Results from a Cell Counting Kit-8 assay demonstrated that IA significantly reduced the numbers of viable PC-3 cells in a time and dose-dependent manner. Phase-contrast microscopy revealed that the number and morphology of cells were markedly altered. Hoechst and EdU staining assays showed that IA reduced the proliferation of PC-3 cells. Flow cytometry analysis revealed that IA arrested cell cycle progression at the S phase and promoted cell apoptosis in a dose-dependent manner. Western blot analysis demonstrated that treatment with IA resulted in downregulation of phosphorylated (p-) PI3K, p-Akt, X-linked inhibitor of apoptosis (xIAP), CKD2, cyclin A2 and pro-Caspase-3 protein expression, and upregulation of cleaved poly(ADP-ribose) polymerase and P53 expression. The present results suggested that IA inhibited the growth of PC-3 cells and induced apoptosis. The underlying mechanism appeared to involve the inhibition of the PI3K/Akt/xIAP pathway. The present study indicated that IA may serve as a therapeutic for the management of prostate cancer and provided a theoretical basis for the pathogenesis of prostate cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。