Identification of calcium and integrin-binding protein 1 as a novel regulator of production of amyloid β peptide using CRISPR/Cas9-based screening system

利用基于 CRISPR/Cas9 的筛选系统鉴定钙和整合素结合蛋白 1 作为淀粉样β肽产生的新型调节剂

阅读:8
作者:Yung Wen Chiu, Yukiko Hori, Ihori Ebinuma, Haruaki Sato, Norikazu Hara, Takeshi Ikeuchi, Taisuke Tomita

Abstract

The aberrant metabolism of amyloid β peptide (Aβ) has been implicated in the etiology of Alzheimer disease (AD). Aβ is produced via the sequential cleavage of amyloid precursor protein (APP) by β- and γ-secretases. However, the precise regulatory mechanism of Aβ generation still remains unclear. To gain a better understanding of the molecular mechanism of Aβ production, we established a genetic screening method based on the CRISPR/Cas9 system to identify novel regulators of Aβ production. We successfully identified calcium and integrin-binding protein 1 (CIB1) as a potential negative regulator of Aβ production. The disruption of Cib1 significantly upregulated Aβ levels. In addition, immunoprecipitation experiments demonstrated that CIB1 interacts with the γ-secretase complex. Moreover, the disruption of Cib1 specifically reduced the cell-surface localization of mature Nicastrin (Nct), which is a component of the γ-secretase complex, without changing the intrinsic activity of γ-secretase. Finally, we confirmed using the single-cell RNA-seq data in human that CIB1 mRNA level in neuron was decreased in the early stage of AD. Taken together, our results indicate that CIB1 regulates Aβ production via controlling the subcellular localization of γ-secretase, suggesting CIB1 is involved in the development of AD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。