HMCES safeguards replication from oxidative stress and ensures error-free repair

HMCES 保护复制免受氧化应激并确保无错误修复

阅读:12
作者:Mrinal Srivastava, Dan Su, Huimin Zhang, Zhen Chen, Mengfan Tang, Litong Nie, Junjie Chen

Abstract

Replication across oxidative DNA lesions can give rise to mutations that pose a threat to genome integrity. How such lesions, which escape base excision repair, get removed without error during replication remains unknown. Our PCNA-based screen to uncover changes in replisome composition under different replication stress conditions had revealed a previously unknown PCNA-interacting protein, HMCES/C3orf37. Here, we show that HMCES is a critical component of the replication stress response, mainly upon base misincorporation. We further demonstrate that the absence of HMCES imparts resistance to pemetrexed treatment due to error-prone bypass of oxidative damage. Furthermore, based on genetic screening, we show that homologous recombination repair proteins, such as CtIP, BRCA2, BRCA1, and PALB2, are indispensable for the survival of HMCES KO cells. Hence, HMCES, which is the sole member of the SRAP superfamily in higher eukaryotes known so far, acts as a proofreader on replication forks, facilitates resolution of oxidative base damage, and therefore ensures faithful DNA replication.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。