The neuroprotective effect of deep brain stimulation at nucleus basalis of Meynert in transgenic mice with Alzheimer's disease

深部脑刺激对阿尔茨海默病转基因小鼠的神经保护作用

阅读:11
作者:Chuyi Huang, Heling Chu, Yu Ma, Zaiying Zhou, Chuanfu Dai, Xiaowen Huang, Liang Fang, Qiang Ao, Dongya Huang

Background

Alzheimer's disease (AD) is the most common type of dementia and mainly treated by drugs, while the therapeutic outcomes are very limited. This study aimed to determine the optimized parameters of deep brain stimulation (DBS) which was applied to the treatment of AD and propose the involved mechanisms.

Conclusions

NBM-DBS starting from 4 months of age for 21 days at a high frequency (100 Hz) has therapeutic effects on AD through activating phosphatidylinositol 3'-kinase (PI3K)/Akt pathway and inhibiting ERK1/2 pathway.

Methods

Amyloid-β precursor protein/Presenilin1 (APP/PS1) transgenic mice were used and received DBS at nucleus basalis of Meynert (NBM). The optimized parameters of DBS were determined by using different stimulation frequencies, durations and ages of mice under Morris water maze test. The involved mechanisms and the possible signal pathways were also investigated.

Results

The optimized parameters for DBS were high frequency (100 Hz) for 21 days starting from early age (4 months old). Under the above parameters, the soluble Aβ40 and Aβ42 in the hippocampus and cortex were down-regulated significantly. DBS increased survival neurons and reduced apoptotic cells in the hippocampus and cortex. Meanwhile, the apoptosis-related proteins caspase-3, caspase-8 and Bid were down-regulated. Moreover, DBS caused a significant increase of superoxide dismutase, glutathione peroxidase and choline acetyltransferase activity as well as a decrease of methane dicarboxylic aldehyde content and acetylcholine esterase activity. Phosphorylation of Akt (p-Akt)/total Akt (t-Akt) was up-regulated while p-extracellular signal-regulated kinase 1/2 (ERK1/2)/t-ERK1/2 was down-regulated. The neuroprotective effect of DBS was attenuated by their inhibitors. Conclusions: NBM-DBS starting from 4 months of age for 21 days at a high frequency (100 Hz) has therapeutic effects on AD through activating phosphatidylinositol 3'-kinase (PI3K)/Akt pathway and inhibiting ERK1/2 pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。