FTZ polysaccharides ameliorate kidney injury in diabetic mice by regulating gut-kidney axis

FTZ 多糖通过调节肠肾轴改善糖尿病小鼠肾脏损伤

阅读:9
作者:Tian Lan, Tang Tang, Ying Li, Yingling Duan, Qin Yuan, Wen Liu, Yuqing Ren, Ning Li, Xuenan Liu, Yu Zhang, Xinglong Li, Guifang Jin, Shengpeng Wang, Jiao Guo

Background

The Fufang-zhenzhu-tiaozhi formula (FTZ), a traditional Chinese medicine (TCM) commonly used to treat metabolic diseases, potentially impacts the microbial ecosystem. Increasing evidence suggests that polysaccharides, bioactive components of TCMs, have great potential on kinds of diseases such as DKD by regulating intestinal flora.

Conclusion

These results show that oral administration of FTZPs, by altering SCFAs levels and the gut microbiome, is a therapeutic strategy for the treatment of DKD.

Methods

The DKD model in mice was established by streptozotocin combined with a high-fat diet (STZ/HFD). Losartan was used as a positive control, and FTZPs were administered at doses of 100 and 300 mg/kg daily. Renal histological changes were measured by H&E and Masson staining. Western blotting, quantitative real-time polymerase chain reaction (q-PCR) and immunohistochemistry were performed to analyze the effects of FTZPs on renal inflammation and fibrosis, which were further confirmed using RNA sequencing. Immunofluorescence was used to analyze the effects of FTZPs on colonic barrier function in DKD mice. Faecal microbiota transplantation (FMT) was used to evaluate the contribution of intestinal flora. 16S rRNA sequencing was utilized to analyze the composition of intestinal bacteria, and UPLC-QTOF-MS-based untargeted metabolomics was used to identify the metabolite profiles.

Purpose

This study aimed to investigate whether the polysaccharide components in FTZ (FTZPs) have beneficial effects in DKD mice via the gut-kidney axis. Study design and

Results

Treatment with FTZPs attenuated kidney injury, as indicated by the decreased urinary albumin/creatinine ratio and improved renal architecture. FTZPs downregulated the expression of renal genes associated with inflammation, fibrosis, and systematically blunted related pathways. FTZPs also restored the colonic mucosal barrier and increased the expression of tight junction proteins (E-cadherin). The FMT experiment confirmed the substantial contribution of the FTZPs-reshaped microbiota to relieving DKD symptoms. Moreover, FTZPs elevated the content of short-chain fatty acids (propionic acid and butanoic acid) and increased the level of the SCFAs transporter Slc22a19. Intestinal flora disorders caused by diabetes, including the growth of the genera Weissella, Enterococcus and Akkermansia, were inhibited by FTZPs treatment. Spearman's analysis revealed that these bacteria were positively correlated with indicators of renal damage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。