Cancer-driving H3G34V/R/D mutations block H3K36 methylation and H3K36me3-MutSα interaction

癌症驱动的 H3G34V/R/D 突变阻断 H3K36 甲基化和 H3K36me3-MutSα 相互作用

阅读:6
作者:Jun Fang, Yaping Huang, Guogen Mao, Shuang Yang, Gadi Rennert, Liya Gu, Haitao Li, Guo-Min Li

Abstract

Somatic mutations on glycine 34 of histone H3 (H3G34) cause pediatric cancers, but the underlying oncogenic mechanism remains unknown. We demonstrate that substituting H3G34 with arginine, valine, or aspartate (H3G34R/V/D), which converts the non-side chain glycine to a large side chain-containing residue, blocks H3 lysine 36 (H3K36) dimethylation and trimethylation by histone methyltransferases, including SETD2, an H3K36-specific trimethyltransferase. Our structural analysis reveals that the H3 "G33-G34" motif is recognized by a narrow substrate channel, and that H3G34/R/V/D mutations impair the catalytic activity of SETD2 due to steric clashes that impede optimal SETD2-H3K36 interaction. H3G34R/V/D mutations also block H3K36me3 from interacting with mismatch repair (MMR) protein MutSα, preventing the recruitment of the MMR machinery to chromatin. Cells harboring H3G34R/V/D mutations display a mutator phenotype similar to that observed in MMR-defective cells. Therefore, H3G34R/V/D mutations promote genome instability and tumorigenesis by inhibiting MMR activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。