Glutamate-activated BK channel complexes formed with NMDA receptors

谷氨酸激活的 BK 通道复合物与 NMDA 受体形成

阅读:6
作者:Jiyuan Zhang, Xin Guan, Qin Li, Andrea L Meredith, Hui-Lin Pan, Jiusheng Yan

Abstract

The large-conductance calcium- and voltage-activated K+ (BK) channel has a requirement of high intracellular free Ca2+ concentrations for its activation in neurons under physiological conditions. The Ca2+ sources for BK channel activation are not well understood. In this study, we showed by coimmunopurification and colocalization analyses that BK channels form complexes with NMDA receptors (NMDARs) in both rodent brains and a heterologous expression system. The BK-NMDAR complexes are broadly present in different brain regions. The complex formation occurs between the obligatory BKα and GluN1 subunits likely via a direct physical interaction of the former's intracellular S0-S1 loop with the latter's cytosolic regions. By patch-clamp recording on mouse brain slices, we observed BK channel activation by NMDAR-mediated Ca2+ influx in dentate gyrus granule cells. BK channels modulate excitatory synaptic transmission via functional coupling with NMDARs at postsynaptic sites of medial perforant path-dentate gyrus granule cell synapses. A synthesized peptide of the BKα S0-S1 loop region, when loaded intracellularly via recording pipette, abolished the NMDAR-mediated BK channel activation and effect on synaptic transmission. These findings reveal the broad expression of the BK-NMDAR complexes in brain, the potential mechanism underlying the complex formation, and the NMDAR-mediated activation and function of postsynaptic BK channels in neurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。